个人信息

联系方式:http://www.lpicea.com/ 公众号“小云杉LPICEA”
电子邮箱:

学科:生态学

中文主页 > 科学研究 > 学术论文

19. I. J. Wright, N. Dong, V. Maire, I. C. Prentice, M. Westoby, S. Díaz, R. V. Gallagher, B. F. Jacobs, R. Kooyman, E. A. Law, M. R. Leishman, U. Niinemets, R. B. Reich, L. Sack, R. Villar, H.Wang, P. Wilf: Global climatic drivers of leaf size. Science. 357: 917-921

发布时间:2021-06-03 点击次数:

DOI码:10.1126/science.aal4760
摘要:Leaf size varies by over a 100,000-fold among species worldwide. Although 19th-century plant geographers noted that the wet tropics harbor plants with exceptionally large leaves, the latitudinal gradient of leaf size has not been well quantified nor the key climatic drivers convincingly identified. Here, we characterize worldwide patterns in leaf size. Large-leaved species predominate in wet, hot, sunny environments; small-leaved species typify hot, sunny environments only in arid conditions; small leaves are also found in high latitudes and elevations. By modeling the balance of leaf energy inputs and outputs, we show that daytime and nighttime leaf-to-air temperature differences are key to geographic gradients in leaf size. This knowledge can enrich “next-generation” vegetation models in which leaf temperature and water use during photosynthesis play key roles.Leaf size, climate, and energy balance Why does plant leaf size increase at lower latitudes, as exemplified by the evolutionary success of species with very large leaves in the tropics? Wright et al. analyzed leaf data for 7670 plant species, along with climatic data, from 682 sites worldwide. Their findings reveal consistent patterns and explain why earlier predictions from energy balance theory had only limited success. The authors provide a fully quantitative explanation for the latitudinal gradient in leaf size, with implications for plant ecology and physiology, vegetation modeling, and paleobotany.
学科门类:理学
一级学科:生态学
是否译文:否
收录刊物:SCI