Contact Information:http://www.lpicea.com/
公众号“小云杉LPICEA”
E-Mail:
Discipline:Ecology
DOI number:10.1038/s41477-020-0655-x
Abstract:Plants and vegetation play a critical—but largely unpredictable—role in global environmental changes due to the multitude of contributing processes at widely different spatial and temporal scales. In this Perspective, we explore approaches to master this complexity and improve our ability to predict vegetation dynamics by explicitly taking account of principles that constrain plant and ecosystem behaviour: natural selection, self-organization and entropy maximization. These ideas are increasingly being used in vegetation models, but we argue that their full potential has yet to be realized. We demonstrate the power of natural selection-based optimality principles to predict photosynthetic and carbon allocation responses to multiple environmental drivers, as well as how individual plasticity leads to the predictable self-organization of forest canopies. We show how models of natural selection acting on a few key traits can generate realistic plant communities and how entropy maximization can identify the most probable outcomes of community dynamics in space- and time-varying environments. Finally, we present a roadmap indicating how these principles could be combined in a new generation of models with stronger theoretical foundations and an improved capacity to predict complex vegetation responses to environmental change.
Integrating natural selection and other organizing principles into next-generation vegetation models could render them more theoretically sound and useful for earth system applications and modelling climate impacts.
Discipline:Natural Science
First-Level Discipline:Ecology
Translation or Not:no
Included Journals:SCI