Personal Information

E-Mail:

Discipline:Atmospheric Sciences

Education Background

  • 1995-1999 B.Sc. Department of Atmospheric Sciences, Physics School, Peking University, Beijing, China
  • 1999-2004 Ph.D. Department of Physics and Atmospheric Sciences, Dalhousie University, Nova Scotia, Canada
  • Work Experience

  • 2013-now Associate Professor Center for Earth System Science, Tsinghua University, Beijing, China
  • 2007-2013 Post-Doctoral Fellow, Research Assistant Canadian Centre for Climate Modeling and Analysis, Victoria, Canada
  • 2004-2007 Post-Doctoral Fellow Max-Planck-Institute for Meteorology, Hamburg, Germany
  • 部分已发表论文:

    2022年

    1. Wang, H., Peng, Y*., von Salzen, K*., Yang, Y., Zhou, W., and Zhao, D.: Evaluation of a Quasi-steady state approximation of the cloud Droplet Growth Equation (QDGE) scheme for aerosol activation in global models using multiple aircraft data over both continental and marine environments, Geosci. Model Dev., 2022, https://doi.org/10.5194/gmd-2021-148

    2. Wang, H., Zhang, M., Peng, Y*., Duan, J*. Analyzing the Characteristics of Cloud Condensation Nuclei (CCN) in Hebei, China using Multi-Year Observation and Reanalysis Data. Atmosphere 2022, 13, 468. https://doi.org/10.3390/atmos13030468

    2021年

    3. Xu, L., Y. Peng*, K. Ram, Y. Zhang, M. Bao, & J. Wei, 2021. Investigation of the uncertainties of simulated optical properties of brown carbon at two Asian sites using a modified bulk aerosol optical scheme of the Community Atmospheric Model version 5.3. Journal of Geophysical Research: Atmospheres, 126, e2020JD033942. https://doi.org/10.1029/2020JD033942

    4. Zhang, Y., Y. Peng*, W. S, Y. Zhang, P. Ponsawansong, T. Prapamontol, Y. Wang, 2021, Contribution of brown carbon to the light absorption and radiative effect of carbonaceous aerosols from biomass burning emissions in Chiang Mai, Thailand , Atmos. Environ., 260(2021), https://doi.org/10.1016/j.atmosenv.2021.118544

    5. Geng, G., Q. Xiao, S. Liu, X. Liu, J. Cheng, Y. Zheng, T. Xue, D. Tong, B. Zheng, Y. Peng, X. Huang, K. He, and Q. Zhang, 2021, Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from Multisource Data Fusion, Environ. Sci. Technol. 2021, 55, 12106−12115, https://doi.org/10.1021/acs.est.1c01863

    6. Liu, Y., P. Liu, D. Li, Y. Peng, and Y. Hu, 2021, Influence of Dust on the Initiation of Neoproterozoic Snowball Earth Events, J. Climate, 34(16), 6673-6689, https://doi.org/10.1175/JCLI-D-20-0803.1

    7. Wei, J., Li, Z., Sun, L., Peng, Y., Liu, L., He, L., Qin, W. and Cribb, M.: 2021. MODIS Collection 6.1 3 km resolution aerosol optical depth product: global evaluation and uncertainty analysis, Atmos. Environ., 240, 117768, https://doi.org/10.1016/j.atmosenv.2020.117768.

    8. Huang, J., H. Tian, J. Wang; T. Yang, Y. Peng, S. Wu, T. Fu, and G. Li, 2021, A Modelling Study on PM2.5-Related Health Impacts from Climate Change and Air Pollution Emission Control— China, 2010s and 2040s, China CDC Weekly, 3(23), 500-506, doi: 10.46234/ccdcw2021.128

    9. Dou, X., C. Liao, H. Wang, Y. Huang, Y. Tu, X. Huang, Y. Peng, B. Zhu, J. Tan, Z. D, N. Wu, T. Sun, P. Ke, and Z. Liu, 2021, Estimates of daily ground-level NO 2 concentrations in China based on Random Forest model integrated K-means, Advances in Applied Energy, 2(2021), https://doi.org/10.1016/j.adapen.2021.100017

    10. Cai, Z. Z. Li, P. LI, J. Li, H. Sun, X. Gao, Y. Peng, Y. Wang, D. Zhang and G. Ren, 2021, Vertical Distributions of Aerosol and Cloud Microphysical Properties and the Aerosol Impact on a Continental Cumulus Cloud Based on Aircraft Measurements From the Loess Plateau of China, Frontiers in Environmental Science, 9:808861, doi: 10.3389/fenvs.2021.808861

    2020年

    11. Wang, M., Y. Peng*, & Y. Liu, 2020. Contrasting aerosol effects on longwave cloud forcing in South East Asia and Amazon simulated with Community Atmosphere Model version 5.3. Journal of Geophysical Research: Atmosphere, 125, doi: 10.1002/2020JD032380.

    12. Guo, Z., M. Wang, Y. Peng*, & Y. Luo, 2020. Evaluation on the vertical distribution of liquid and ice phase cloud fraction in Community Atmosphere Model version 5.3 using spaceborne lidar observations. Earth and Space Science, 7, e2019EA001029. https://doi.org/10.1029/2019EA001029

    13. Wang, M., Y. Peng*, Y. Liu, Yu Liu, X. Xie, & Z. Guo, 2020. Understanding cloud droplet spectral dispersion effect using empirical and semi‐analytical parameterizations in NCAR CAM5.3. Earth and Space Science, 7, e2020EA001276. https://doi.org/10.1029/2020EA001276

    14. Lin, Y., X. Huang, Y. Liang, Y. Qin, S. Xu, W. Huang, F. Xu, L. Liu, Y. Wang, Y. Peng, & et al. 2020. Community Integrated Earth System Model (CIESM): Description and evaluation. Journal of Advances in Modeling Earth Systems, 12, e2019MS002036. https://doi.org/ 10.1029/2019MS002036

    15. Liu, P., Y. Liu, Y. Peng, et al. 2020. Large influence of dust on the Precambrian climate. Nature Communication,11, 4427 (2020). https://doi.org/10.1038/s41467-020-18258-2

    16. Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., Guo, J., Peng, Y., Li, J., Lyapustin, A., Liu, L., Wu, H., and Song, Y. 2020: Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees, Atmos. Chem. Phys., 20, 3273–3289, https://doi.org/10.5194/acp-20-3273-2020.