Personal Information

E-Mail:

Discipline:Atmospheric Sciences

Education Background

2003-2007 Meteorology, School of Atmospheric Science, Nanjing University, Bachelor of Science
2007-2011 Meteorology, School of Atmospheric Science, Nanjing University, Ph. D. (Supervisor: Rongsheng Wu)

Work Experience

2011-2013 Center for Earth System Science, Tsinghua University, Postdoctoral Research Fellow (Cooperation Supervisor: Bin Wang)
2014-present Department of Earth System Science, Tsinghua University, Assistant Professor, Associate Professor

1. A deep learning-based scheme for parameterizing sea surface roughness was proposed and successfully applied to WindWave 1.0, a coupled ocean-atmosphere-wave model for the Northwest Pacific region developed by my group. In five typhoon cases in August 2020, the RMSEs of the sea surface winds forecasted using the new scheme were reduced by 6.02% to 14.75%, 11.17% to 18.30%, and 11.91% to 19.46% at 24-, 48-, and 72-hour forecast lead time, respectively, compared with the four traditional schemes, which suggests that the new sea-surface roughness scheme can successfully improve the NWP sea surface wind forecast.

2. The first to reveal that there is no canonical negatively-correlated relationship between the Arctic Oscillation and Siberian High.

3. Revealed that during winter over East Asia, the warm and neutral regimes tend to transform into cold regimes, while cold regimes can hardly transform into warm or neutral regimes.

4. Revealed that European blocking activities play a dominant role in triggering the wintertime extreme precipitation events over South China, identified the major moisture sources for these precipitation events as the South China Sea, the northwestern Pacific Ocean, the East China Sea, South China itself, and southeastern Asia.

Recent Publications:

[1] Huang W*, X. He, Z. Yang, T. Qiu, J. S. Wright, B. Wang, and D. Lin (2018), Moisture sources for wintertime extreme precipitation events over South China during1979-2013,Journal of Geophysical Research: Atmospheres,doi:10.1002/2018JD028485.

[2] Huang W*, Z. Yang, X. He, D. Lin, B. Wang, J. S. Wright, R. Chen, W. Ma, and F. Li (2018),A possible mechanism for the occurrence of wintertime extreme precipitation events over South China,Climate Dynamics,doi:10.1007/s00382-018-4262-8.

[3] Huang, W*, R. Chen, Z. Yang, B. Wang, and W. Ma (2017), Exploring the combined effects of the Arctic Oscillation and ENSO on the wintertime climate over East Asia using self-organizing maps, Journal of Geophysical Research: Atmospheres, 122, 9107–9129, doi:10.1002/2017JD026812.

[4] Yang, Z.,W. Huang*, B. Wang, R. Chen, J. S. Wright, and W. Ma (2017), Possible mechanisms for four regimes associated with cold events over East Asia,Climate Dynamics, doi:10.1007/s00382-017-3905-5.

[5] Chen R.,W. Huang*, B. Wang, Z. Yang, J. S. Wright, and W. Ma (2017),On the co-occurrence of wintertime temperature anomalies over eastern Asia and eastern North America,Journal of Geophysical Research: Atmospheres,doi:10.1002/2016jd026435.

[6]Huang, W.*, R. Chen, B. Wang, J. S. Wright, Z. Yang, and W. Ma (2017), Potential vorticity regimes over East Asia during winter,Journal of Geophysical Research: Atmospheres,doi: 10.1002/2016JD025893.

[7] Shi, Y., B. Wang, andW. Huang* (2017), A “self-adjustment” mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue,Atmospheric Science Letters, doi:10.1002/asl.728.

[8]Huang, W.*, B. Wang, and J. S. Wright (2016), A potential vorticity-based index for the East Asian winter monsoon,Journal of Geophysical Research: Atmospheres,121(16), 9382-9399, doi:10.1002/2016JD025053.

[9]Huang, W. *, B. Wang, J. S. Wright, and R. Chen (2016), On the Non-Stationary Relationship between the Siberian High and Arctic Oscillation,PLoS ONE,11(6), 15, doi:10.1371/journal.pone.0158122.

[10]Huang, W., B. Wang, Y. Yu, and L. Li (2014), Improvements in LICOM2. Part I: Vertical Mixing,Journal of Atmospheric and Oceanic Technology,31(2), 531-544, doi:10.1175/jtech-d-13-00065.1.

[11]Huang, W., B. Wang, L. Li, and Y. Yu (2014), Improvements in LICOM2. Part II: Arctic Circulation,Journal of Atmospheric and Oceanic Technology,31(1), 233-245, doi:10.1175/jtech-d-13-00064.1.

[12]Huang, W., et al. (2014), Variability of atlantic meridional overturning circulation in FGOALS-g2,Advances in Atmospheric Sciences,31(1), 95-109, doi:10.1007/s00376-013-2155-7.

[13]Huang, W.*, Bin Wang, Lijuan Li, et al. 2014, Response of Atlantic meridional overturning circulation in FGOALS-g2 model to three representation concentration pathways,Climatic and Environmental Research(in Chinese),19(6), 670-682, doi:10.3878/j.issn.1006-9585.2013.13130.

[14] Dong, F., Y. Li, B. Wang,W. Huang, Y. Shi, and W. Dong (2016), Global Air-Sea CO2 Flux in 22 CMIP5 Models: Multiyear Mean and Interannual Variability,Journal of Climate,29(7), 2407-2431, doi:10.1175/jcli-d-14-00788.1.

[15] Dong, W., Y. Lin., J. S. Wright, Y. Ming, Y. Xie, B. Wang, Y. Luo,W. Huang, J. Huang, L. Wang, L. Tian, Y. Peng, and F. Xu (2016), Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent,Nature Communications,7, doi:10.1038/ncomms10925.

[16] Xia, K., B. Wang, L. J. Li, S. Shen,W. Huang, S. Xu, L. Dong, and L. Liu (2014), Evaluation of Snow Depth and Snow Cover Fraction Simulated by Two Versions of the Flexible Global Ocean-Atmosphere-Land System Model,Advances in Atmospheric Sciences,31(2), 407-420, doi:10.1007/s00376-013-3026-y.

[17] Wang, B., M. Liu, Y. Yu, L. Li, P. Lin, L. Dong, L. Liu, J. Liu,W. Huang, S. Xu, S. Shen, Y. Pu, W. Xue, K. Xia, Y. Wang, W. Sun, N. Hu, X. Huang, H. Liu, W. Zheng, B. Wu, T. Zhou, and G. Yang (2013), Preliminary evaluations of FGOALS-g2 for decadal predictions,Advances in Atmospheric Sciences,30(3), 674-683, doi:10.1007/s00376-012-2084-x.

[18] Li, L., P. Lin, Y. Yu, B. Wang, T. Zhou, L. Liu, J. Liu, Q. Bao, S. Xu,W. Huang, K. Xia, Y. Pu, L. Dong, S. Shen, Y. Liu, N. Hu, M. Liu, W. Sun, X. Shi, W. Zheng, B. Wu, M. Song, H. Liu, X. Zhang, G. Wu, W. Xue, X. Huang, G. Yang, Z. Song, and F. Qiao (2013), The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2,Advances in Atmospheric Sciences,30(3), 543-560, doi:10.1007/s00376-012-2140-6.

[19] Li, L., B. Wang, L. Dong, L. Liu, S. Shen, N. Hu, W. Sun, Y. Wang,W. Huang, X. Shi, Y. Pu, and G. Yang (2013), Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2),Advances in Atmospheric Sciences,30(3), 855-867, doi:10.1007/s00376-013-2157-5.

[20] Xu, S., M. Song, J. Liu, B. Wang, L. Li,W. Huang, L. Liu, K. Xia, W. Xue, Y. Pu, L. Dong, S. Shen, N. Hu, M. Liu, and W. Sun (2013), Simulation of sea ice in FGOALS-g2: Climatology and late 20th century changes,Advances in Atmospheric Sciences,30(3), 658-673, doi:10.1007/s00376-013-2158-4.

[21]Dong L., L. Li,W. Huang, Y. Wang, and B. Wang (2012), Preliminary Evaluation of Cloud Fraction Simulations by GAMIL2 Using COSP,Atmospheric and Oceanic Science Letters,5(3), 258-263, doi: 10.1080/16742834.2012.11447002.

[22]Huang, W.*, R. Wu, and J. Fang (2010), The adaptive wavelet collocation method and its application in front simulation,Advances in Atmospheric Sciences,27(3), 594-604, doi:10.1007/s00376-009-8189-1.

[23]Huang, W.*, R. Wu (2009), An optimum scheme for finite difference,Acta Meteorologica Sinica(in Chinese), 67(6), 1069-1079.